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We present first-principles calculations of elastic constants for several diamondlike BC2N �d-BC2N� struc-
tures. Our results show that for the fully relaxed d-BC2N structures, although the deviations of their lattice
constants from those of cubic lattices are small �about 1%�, the differences among the elastic constant com-
ponents, that should be the same for cubic lattices, can reach 75% due to the chemical anisotropy of the
d-BC2N structures, which will affect the spectra of acoustic phonons of these d-BC2N structures and so their
bulk moduli determined by Brillouin scattering experiments. For calculations, in which exact cubic symmetry
is imposed on these d-BC2N structures during the structural relaxations, our tests show that large residual
stresses of 4–5 GPa exist in such constrained cubic d-BC2N structures that are not fully relaxed. Any results
derived by assuming such exact cubic symmetry on these d-BC2N structures may not be reliable.
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Considerable efforts have been made to describe the
structures of recently synthesized diamondlike BC2N
�d-BC2N� for its potential applications as a superhard mate-
rial with high-temperature thermal stability.1–6 Recently, Kim
et al.7 reported a first-principles calculation on the high- and
low-density d-BC2N by constraining the structures to exact
cubic symmetry and claimed that the calculated bulk moduli
are in excellent agreement with the available experimental
data and consequently the structures of the synthesized high-
and low-density d-BC2N are determined. Exact cubic sym-
metry was also assumed in the analysis of the experimental
x-ray diffraction results of the synthesized d-BC2N samples.8

However, these d-BC2N structures are not exactly cubic due
to the differences in chemical properties of boron, carbon,
and nitrogen atoms. Here we report the first-principles calcu-
lations of elastic constants of these d-BC2N structures, which
show that the differences among the elastic constant compo-
nents, that should be the same for cubic lattices, can reach
75%, even though the deviations of their lattice constants
from those of exact cubic lattice structures are about 1%. The
chemical anisotropy of the d-BC2N structures will affect,
among other things, the spectra of acoustic phonons, and so
the bulk moduli determined by Brillouin scattering
experiments.9

We study the d-BC2N structures denoted as BC2N-1,
BC2N-2, and BC2N-3 in Ref. 1, which recently have been
assigned to the high-density �BC2N-1 and BC2N-2� and
low-density �BC2N-3� structures of d-BC2N �Ref. 7� synthe-
sized experimentally.8,10,11 The crystal lattices and orienta-
tions of the unit �or super� cells of the d-BC2N structures are
given in Fig. 1. In our calculations we used the PARATEC

code12 with all the calculation parameters being the same as
those used in Ref. 1, where we employed the ab initio
pseudopotential and local-density approximation �LDA� with
a plane-wave basis set.13–15 The norm-conserving Troullier-
Martins pseudopotentials16 were used with cutoff radii of
1.3, 1.3, and 1.5 a.u. for N, C, and B, respectively. The
exchange-correlation functional of Ceperley and Alder14 as
parameterized by Perdew and Zunger17 was used. The total
energy of the structures was minimized by relaxing the struc-
tural parameters using a quasi-Newton method.18 The total-
energy and stress calculations used an eight-atom zinc-

blende-structured unit cell,1 an 8�8�8 Monkhorst-Pack19

k-point grid, and a 100 Ry energy cutoff. The energy conver-
gence of the calculation is on the order of 10−6 eV for the
eight-atom cells in Fig. 1 with the residual stresses in the
fully relaxed structures less then 0.05 GPa.

In Table I, we compare the calculated lattice constants for
the d-BC2N structures studied by several different groups
using different density-functional theory �DFT� first-
principles calculation packages �such as PARATEC, CASTEP,
CERIUS, and VASP� within both generalized gradient approxi-
mation �GGA� and LDA. Most of the reported results are in
good agreement with those obtained in our previous work.1

This shows that, when properly performed, different DFT
packages should and would lead to essentially the same
structural results. In particular, most of the reported calcula-
tions show differences �close to 1%� among the three lattice
constants for each and every d-BC2N structure studied here
while only one single lattice constant is used in Ref. 7 to
approximate the d-BC2N structures by exact cubic lattices
which require their lattice constants a=b=c and �=�=�
=90° during the structural relaxations. The fully relaxed
structures of d-BC2N have the following crystal symmetry:
BC2N-1 has a monoclinic supercell, BC2N-2 is orthorhom-
bic, and BC2N-3 is tetragonal. A small and orthorhombic unit
cell23 can be defined for BC2N-1 with the lattice vectors a�0

=R� C2−R� C1, b�0=R� C3−R� C1, and c�0=b� �see Fig. 1�.
The elastic constants of d-BC2N are calculated with the

energy-strain scheme by applying controlled strains to the
fully relaxed d-BC2N structures and then relaxing the ion
positions while keeping the strained lattice constants
unchanged.24 The elastic constants are determined by the
second-order derivatives of the total energy changes in the
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FIG. 1. �Color online� The structures of d-BC2N.
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d-BC2N structures with respect to the applied strains. The
total energy-strain curves are obtained by fitting the calcu-
lated total energy changes as functions of applied strains in a
polynomial up to the second order in the applied strains with
several discrete values of strains limited within �1%. Table
II gives the calculated elastic constants of the d-BC2N struc-
tures and how the strains are applied for the calculation of
different Cij. For BC2N-1, there are several other nonzero Cij
with values less than 30 GPa that are not listed in Table II.
Existing results of the elastic constants of d-BC2N �Refs. 22
and 23� are also listed in Table II for comparison. The results
in Table II show the effects of chemical anisotropy on the
mechanical properties of d-BC2N, where even though the
differences caused by the chemical anisotropy of the d-BC2N
structures among the lattice constants are small �about 1%�,
the differences among the elastic constant components, that
should be the same for cubic lattices, are about 10% for
BC2N-1 �supercell� and BC2N-2, and reach 75% among
�C12, C23, and C31� for BC2N-3. Our calculation predicted

much less anisotropy in the elastic constants of BC2N-2 than
those obtained in Ref. 22, which gives a bulk modulus of
459.4 GPa using E�V� relation and 441 GPa using Cij with
the formula we use below.25 Both are higher than the other
results listed in Table III and almost equal to that of diamond
�463.7 GPa�,22 while all synthesized d-BC2N samples show
much lower bulk moduli compared to that of diamond.8,10

In Table III, we compare the bulk moduli of the d-BC2N
structures calculated from elastic constants we obtained by
the formula25 B0= ��C11+C22+C33�+2�C12+C23+C31�� /9,
and those obtained by the fittings of the energy-volume
points given in our previous work and by several other
groups using different DFT first-principles calculation pack-
ages �such as PARATEC, CASTEP, CERIUS, VASP, and ABINIT�
within both GGA and LDA. Most of the results agree well,
indicating the consistence of various calculation methods and
codes. In the above formula25 to calculate the bulk modulus
from elastic constants, the differences in the changes in dif-
ferent lattice constants with respect to the change in volume

TABLE I. Comparisons of the calculated lattice constants �a , b , c� of d-BC2N �in the unit of Å�.

Structure Ours �a , b , c� Others �a , b , c�

BC2N-1 monoclinic �supercell� 3.570, 3.609, 3.570 ��=89.5°�a 3.61b

3.572, 3.607, 3.572 ��=89.42°�c

3.579, 3.612, 3.579 ��=89.32°�d

BC2N-2 orthorhombic 3.568, 3.613, 3.564a 3.61b

3.570, 3.610, 3.566c

3.554, 3.599, 3.553e

BC2N-3 tetragonal 3.584, 3.634, 3.584a 3.64b

3.589, 3.635, 3.589c

aReference 1.
bReference 7.
cReference 20.
dReference 21.
eReference 22.

TABLE II. The calculated elastic constants of d-BC2N �in the unit of GPa�, applied nonzero strains, and
second-order derivatives of total energy changes with respect to the applied strains. For BC2N-1, elastic
constants in both the supercell and unit cell are given �see Fig. 1 and the text�. Previous results of BC2N-1
and BC2N-2 are also listed for comparison.

BC2N-1 BC2N-2 BC2N-3

Applied strain d2��E /V� /d	2Super Unit Othera Unit Otherb Unit

C11 907.8 975.0 1002.9 906.0 916.0 861.7 e1=	 C11

C22 921.5 1083.5 1106.1 920.1 1064.2 945.1 e2=	 C22

C33 907.8 921.5 938.1 900.5 939.0 861.7 e3=	 C33

C44 484.6 509.9 528.6 502.3 460.3 462.6 e4=2	 4C44

C55 500.7 459.0 496.5 501.8 524.0 500.1 e5=2	 4C55

C66 484.3 379.3 384.9 504.2 627.5 462.6 e6=2	 4C66

C12 159.5 27.8 27.1 138.8 120.2 156.7 e1=−e2=	 C11+C22−2C12

C23 159.5 166.6 168.5 157.1 205.3 156.7 e2=−e3=	 C22+C33−2C23

C31 149.2 152.3 153.4 156.5 199.6 89.1 e3=−e1=	 C33+C11−2C31

aReference 23.
bReference 22.
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are neglected. This is expected to be a good approximation
for the d-BC2N structures which deviate only slightly from
those of cubic lattices. For the tetragonal BC2B-3, for in-
stance, we obtain 
=d�b /a� /dV�V / �b /a�=−0.045, which
gives B0=384 GPa using a more complex formula26 com-
pared to B0=386 GPa using the above simple formula.25 An-
other possible error in the calculated bulk modulus may
come from the fact that the phonon contribution to the total
energy of the crystal is neglected in the DFT calculation.
Even at zero temperature, the total energy of the crystal
should include the phonon zero-point energy which depends
on the distribution of the phonon frequencies. Changes in the
crystal volume will change the phonon frequencies and so
the bulk modulus of the crystal through phonon contributions
to the crystal total energy. Previous studies27 have shown that
phonon zero-point energy and finite-temperature contribu-
tions to bulk moduli of some metals can be as large as 20%.
However, for less compressible materials, such as d-BC2N
where thermal effects at ambient conditions are weak, we
expect that the volume dependence of the phonon frequen-
cies do not introduce significant contributions to bulk
moduli. As the phonon zero-point energy and thermal effects
are not included in the DFT-based bulk modulus calculations
whether one uses the fittings of energy-volume or energy-
strain �Cij� points, in principle, these two methods should
have the same accuracy, as is shown in Table III, if the cor-
rect structure is adopted in both methods. In Ref. 7, the bulk
moduli for the d-BC2N structures are obtained by B0= �C11
+2C12� /3, which comes as a special case of the general
formula25 B0= ��C11+C22+C33�+2�C12+C23+C31�� /9. The
special formula is valid only for structures with exact cubic
symmetry where C11=C22=C33, C44=C55=C66, and C12
=C23=C31, and is not applicable for the d-BC2N structures,
especially for BC2N-3 where the differences among �C12,
C23, and C31� reach 75% �see Table II above�. Therefore,
using �C11,C12�, �C22,C23�, or �C33,C31� in the special for-
mula, which are equivalent under true cubic symmetry, will
obviously result in significant differences in the calculated
bulk moduli. From our calculated elastic constants in Table
II, the difference in the bulk moduli obtained using different
sets of Cij in the above special formula valid only for cubic
lattices is about 3% for BC2N-1 �supercell� and BC2N-2, and

reaches 21% for BC2N-3. When the artificial cubic symme-
try is imposed, the calculation errors are expected to increase
since the anisotropic distribution of different B, C, and N
atoms �i.e., chemical anisotropy� in the unit cell will lead to
residual stresses, as we will discuss below, which will com-
plicate the calculation of elastic constants.

To see the effects of the lattice symmetry on the structural
relaxation, we calculated total energy and stresses of BC2N-1
and BC2N-3 as functions of lattice constant a by imposing
the exact cubic symmetry �a=b=c and �=�=�=90°� while
relaxing the atomic positions until all the forces on atoms
become zero. The calculated external stresses needed to
maintain the assumed cubic symmetry of the d-BC2N struc-
tures are plotted in Fig. 2. Calculated results for BC2N-2 are
about the same as those for BC2N-1 because of their simi-
larities and are not given. It is obvious from Fig. 2 that large
residual stresses of about 4–5 GPa remain in the structures at
the minimum energy if the exact cubic symmetry constraint
is imposed in the structural relaxation. For any accurate first-
principles calculations, it is important, not only to check the
energy convergence, but also the stress convergence. A re-
sidual stress below 0.1 GPa is usually considered acceptable
for the equilibrium structures of the low compressible B, C,
and N compounds. Anything above this level indicates that
the structure has not been properly relaxed and further cal-
culations performed on such structures would not be reliable.
Our test calculations show �see Fig. 2� that the d-BC2N
structures with the exact cubic symmetry constraint contain
residual stresses 40–50 times the acceptable level. Conse-
quently, without a full structural relaxation that removes the
residual stresses and a proper account of all Cij’s in the cor-
rect formula for bulk moduli for the three d-BC2N structures

TABLE III. Comparisons of the bulk moduli of d-BC2N �in the
unit of GPa� calculated by the elastic constants we obtained, and
those by the fittings of the energy-volume points given in our pre-
vious work and by several other groups.

Ours Others

BC2N-1 408.2 �399.7a� 342.4b, 383.3c, 402.1d, 397.6e,409.0f

BC2N-2 403.6 �400.1a� 344.7b, 459.4g, 380.7d, 400.2e

BC2N-3 385.9 �369.9a� 289.6b, 362.9d

aReference 1.
bReference 7.
cReference 21.
dReference 28.
eReference 2.
fReference 23.
gReference 22.
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FIG. 2. �Color online� The calculated total-energy difference
�left scale� relative to the lowest energy, and stresses �right scale� of
BC2N-1 �top panel� and BC2N-3 �bottom panel� as functions of
lattice constant obtained by the constrained relaxation of cubic sym-
metry �a=b=c and �=�=�=90°�. The symmetries of the struc-
tures require that the stress �zz=�xx and all the other stress compo-
nents not shown in the figure to be zero.
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that have different and reduced �from cubic� symmetries, the
calculated results and any conclusions, such as the structural
assignments based on such calculations, may contain errors.

In summary, crystal structures and elastic constants of
several different d-BC2N structures were studied. Our results
show that for the fully relaxed d-BC2N structures, although
the deviations of their lattice constants from those of exact
cubic lattices are small �about 1%�, the differences caused by
the chemical anisotropy of the d-BC2N structures among the
elastic constant components, that should be the same for cu-
bic lattices, are about 10% for BC2N-1 �supercell� and
BC2N-2, and reach 75% for BC2N-3 among its �C12, C23,
and C31�, which is expected to affect the spectra of acoustic
phonons of these BC2N structures and so their bulk moduli
determined by Brillouin scattering experiments,9 etc. The
bulk modulus calculated with the special formula applicable
only to cubic lattices will have an error of 20% for the

BC3N-3 structure. Our test calculations also show that, apart
from ignoring differences among elastic constant compo-
nents that are equivalent only for cubic lattices, imposing
exact cubic symmetry for the nominally cubic d-BC2N struc-
tures also induces large residual stresses in such constrained
cubic d-BC2N structures. The stress differences among dif-
ferent stresses components can be as large as 10 GPa, which
will further complicate the calculation of elastic constants in
these constrained cubic d-BC2N. Our calculations confirm
that the DFT-based bulk modulus calculations, whether one
uses the fittings of energy-volume or energy-strain �Cij�
points, should have the same accuracy, if the correct struc-
ture is adopted in both methods.
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